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phenomena, For example, a gas moving under the action of partial pressure brings into
motion a gas at rest which has no partial pressure, This is the case of a molecular ejec-
tor. The effectiveness of the performance of a molecular ejector can be determined
using the theory expounded above, In a number of cases a gas can be set into motion
which opposes its pressure gradient,

The theory developed here and the phenomena discovered play a major part in a num-
ber of practically important problems, and in particular in the problems of separating the
gas and liquid mixtures by means of porous and semipermeable membranes,
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A condition governing crack growth in a piezoelectric material is formulated,
and the problem of tunnel crack development on the boundary between a piezo-
electric ceramic and an elastic isotropic conductor is considered as an illustra-
tion, The stress components, displacements, electric field potential, displacement
of the electric induction, and the magnitude of the critical load associated with
crack growth are determined,

1, Fracture condition for piegoelectric media, The mechanical
stress tensor components ¢ ;; in the static loading of a piezoelectric medium are func-
tions of not only the geometric deformations but also of the electrical field,

Let us select the electrical field and the strain tensor components as independent vari-
ables, and let us represent the equation of the piezoelectric medium in crystal physics
Cartesian z, y, z coordinates as follows [1]:

£ .
Sij = Ciji€rr — €ijkLys D; = eyuy + &’ By (i, 7,k 1=1,2,3 (1,1)

Here cf‘;kl are the elastic moduli of the medium, ¢;;; are the piezoelectric moduli,
£} » are adiabatic dielectric constants of the medium, g,; are strain tensor compon-
ents, ¢;; are stress tensor components, E, are electrical field sirength components, and
D are the vector components of the electrical induction,

Neglecting volume forces and the Maxwell equations in the absence of free charges,
the equilibrium equations of the medium are:
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66,-;/6';6,- :0, 01)]/856, =0 (1.2)

To deduce the additional condition governing crack growth in a piezoelectric medi-
um, let us introduce the external macroscopic energy flux dA4 ,s originating as a re-
sult of crack propagation,

Analogously to [2], we examine two possible states of a piezoelectric body (Fig, 1)
corresponding to the instants / (solid lines) and #; == ¢ -+ Af (dashed lines), The boun-
dary conditions for the linearized problem can be formulated on the surface X 4 A3
(AX is the increment of the bilateral surface of discontinuity), Let u {u;}denote the
vector of displacement from a certain initial state to the state corresponding to the ins-
tant £, and u; {u;,} the vector of the displacement from the same initial state to the
state corresponding to the instant #;.

On the basis of the equations of motion of the medium (1,2), the following equalitiess

9 a
oz, (i1 -+ o35) = 0, = (Dji— Dj) = 0

are satisfied for points of the volume V at the instants ¢ and £, Multiplying the first
of these equalities by /5 (#;;—u;) and the second by Y/5(@: + @), we add the results
and integrate over the whole body volume (¢ is the electrical field potential, E -
gradg). After obvious manipulations, we obtain

i
7\ Gato)e—wndS+ 4 { On—D) @t mas= .9

E-Miz ) BLAD
5 él(%x + 6i3) (81 — &) + (Djs — D3)(Ejn + Ej)ldv

Using the relationship

Oiffin + EiDj = 0ijiey; + EjD;
which is verified directly by substitution of (1,1) therein, it is easy to show that theright
side of (1, 3) is the change in internal energy
density
U = 1/20"'1'85]' -+ 1/2DjEj
when making the transition from one state to
another, In the absence of an external heat
flux, (1, 3) can be written thus [2]:

dW =dA 4 dAax

Here W is the increment in the internal
energy, dA is the sum of the work of the
external surface forces and the field on the
Fig, 1 whole boundary (up to the appearance of frac-
ture) of the body X, and the expression for
the energy flux in the formation of fracture dA4 Ay can be written as

1 t ¢
dAazg = —- S Gii1idS + - S Gy (Ui — ;) ndS + 1.4
AR axn
¢ IR ¥
- S @Djn;dS - 5 3 91(Dju — D;)nidS
A AZ
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Taken into account in this latter expression is the fact that the following equalities
S oiuin;dS = 0, S ¢DinidS =0
Ax A%
are valid because of the continuity of the displacements u,the stresses 0;;, the poten-
tial @ and the electric induction D; on:AS ,

It is known from fracture mechanics [2 — 4] that the energy flux is related to the sur-
face energy (y is the intensity of the fracture surface energy) dl/, = y (AZ, + AZX,).
The crack propagation condition is

dU, = — dAax (1. 5)

in the statistical case and for an adiabatic process, In particular, if the crack edges are
stress-free, condition (1, 5) yields:

i
TAZ + A%y = — 5 ( JS Siuian;dS 4 @DpnidS +  (1.6)
ADyd- ALy

AN 4ATL,
Py (Djj_ o DJ) n,-clS
ALAX,

For example, the fracture condition (1,6) can be represented thus:
a a

i d g ' :
7= (S Gijolditydx + S @oDjn;dx +- Scp (D; — Djy) njdz a.mn
0 0 0

for a crack located along the z-axis (| | <{ @) in the plane strain case, Here 05,
D jq, @, are parameters determined from the solution of the electroelasticity problem
for the body region under consideration, but without a crack , and the integration is per-
formed over both edges of the crack,

2, Tunnel crack on the boundary with a conductor, Formula-
tion of the problem, Let usexamine an unbounded half-space z 2> ( of a piezo-
electric material, A rectilinear crack is located in the z = ( plane of isotropy of a
transversely isotropic medium (texture of the class oo -m, crystals of hexagonal syngony
of class 6.m) on the boundary with an elastic isoropic conductor (z < (), where the
crackedges — a < 2 &, — o0 < y < o0 are load-free, A constant stress g,
parallel to the z -axis is given constant at infinity, The problem is considered for the
plane strain case,

Following [1], it is possible to rewrite (1, 1) in matrix form if the subscripts are replaced
according to the following scheme:

i1 ~1, 23 =32 ~ 4
2 ~2, 13 =31 ~5
33~3, 12 =21~6
The matrices of the elastic moduli ¢;;¥, the piezoelectric moduli €;z, and dielectric

permeabilities &;;° (i, ] =1,2...6;k, [ =1, 2, 3) for the textures and crystals
under consideration are
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2.1)
e et o O 0 0 0 0 ey
e cuf cf 0 0 0 8 g €31
. cis® e cg® 0 0 0 leixl = 0 e e(a)s
lei®l=10 0 0 ¢4 O 0 . 65 0
0 0 0 0 g F 0 15
f e o 0 0 0
0 0 0 0 0 T(Cll - {19 ) !

lew’ | = diag [e11°s 811°, €35°)

On the basis of (1, 1), (2. 1), the equations of a piezoelectric medium for the case ofplane
strain defined by the displacement u* {u* (z, z), 0, w* (x, 2)} (z > 0) and the po-

tential x, z) are au+ aw* o
¢ (@2 Orx = enf o et —em - (2.2)
8u 0w op
Opz = C13E + Cag” - €335
au dw* o
Gz = Cag® ( 5 T W) AT

qut wt dp
Dx:els( dz -+ 6z)+81187x—

o9
D = €315 ax + €33 —— az + 833 az

Taking account of (1,2), (2, 2), we obtain the following fundamental equations to inves-
tigate the electroelasticity problem (z > 0): '

ut atu* g Fwt
en® —— + caf — + (1" + ) oy —(emt e e16) 2 axa (2.3)

0%t g 0wt %t % o
(€15® + ey )'5;:5; -+ €aa ax2 -+ CssE "52— — €15 o7 — €33 5or

=0

s 3%
(€31 -+ 6’15) axaz *i‘ 15 8x2 —f" 33 822 + 1’ 8:«:2 + as’ 722 =0

For the 1sotrop1c conducting medium (z < 0) with the displacement u~ {u~ (z, z),
0, w~ (z, z)} for points of the medium, we have
du~ 8w

Gax = (M 2p) —- (2.4)
7 , ? - ~ du—
e s ()

where A, o are Lame coefficients, and the tensor components (2, 4) satisfy the equilibrium
equations (1, 2).

By virtue of the linearity of (1,2),(2,2) ~ (2. 4), the solution of the formulated static
problem can be sought as the sum of solutions of the following two problems: the prob-
lem of determining the stress and strain states, the electric field components and the
induction in a continuous piezoelectric medium reinforced everywhere in the plane with
an isotropic medium subjected to the constant tensile stress ¢ at infinity (4) ,and the
problem of determining the states of media with a crack when external surface forces
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and a field act on the crack edges(B).
It is easy to verify that the solution of the problem 4 is

Ut = U™ = Oyt =0t =0py” =0y~ =B, =D, =0 (2.9
o - o esy
6t =0, =Gy W = e Gz
£31C33 — €33C13
_ 1 e
W = ——5— G2 @ = —————— Gz
A 2p ’ 63163:4& — eggerst

D esiess + esscps’
= F %
£€31033° — £33C1y
The solution of problem B can be obtained for the following conditions on the boun-
dary between the two media:

Ot =0,", Onpt =0,", ¢ =0, 2=0, —cc<cr (2.6)
ut =u-, wt =w7; =0, |z|>a
G, = — 0O, Oyt 20; z=0, |z|<a

u"':*w"':(p = U = W ::20, R:sz—{—zz—-%oo

3, System of singular integral equations, Let usseek the solution of
(2.3) for z > (O by using the Fourier integral transform

80

ut(z, z) = ]/—-i— \ U (p, pz) sin px dp (3.1)

w(z,z) = ]/:i—"

W (p, pz) cos px dp

SO 8 D&

5
cp(x,z)_—_]/TS @ (p, pz)cosprdp, .20, x>0

0

Substituting (3, 1) into (2, 3), we obtain a system of ordinary differential equations to
determine the functions [J, W, @. We write particular solutions of this system for
z > 0 which satisfy the conditions at infinity as

U = ae™?, W = ﬁe“kz, b = ye K
Here % is the root with positive real part of the bicubic characteristic equation
det | @y | =0 (3.2)
Ay = €l — B, G = — Ay = (c1s® + cF) by @z =
cash? — Cat®

13 = — Gz = — (eg + €15) Fir Qg3 = — B3z =
e g 2 __ g S
— egqk?® + €15y A3a= B33’k En
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An analysis of (3, 2) shows that it has two real roots & k, and four pairwise conjugate
complex roots + § -+ i, , for known piezoceramics in the media classes under consi-
deration, where k,, 8, @ > 0. The constants ¢ (k), B (k), y (k) which are a solu-
tion of the homogeneous system of equations with matrice | ay; | are defined by the for-
B 2
mulas g = Qialay — Gylpy, P = — @y — Gpalhisy ¥ = Gufer T G2

Therefore, the general solution for U, W, ® can be represented as

v oy Olgy -+ ictgy
Wl =81 |Awe™ + Rej| By + iy | (By + iCy) e-2+iw) (3, 3)
@ T Yo1 1 iTa2

o, =0a k), B=PBFk) v =7k
Oy + iy = & (8 + in), Bay + s = B (8 + iw)
Yo + 22 = (6 + i)

Here 4, (p), By (p), €, (p) are functions to be determined from the boundary condi-
tions,

Using (3,1) and (3, 3), we obtain the following expressions for the displacement and
potential: =

ut(z,z) = ]/%S [ot1 41 (p) €7%1P% 4 (01 By (p) — %g9Cy (p)) €302 X (3.4)

0

€08 0Pz +- (2asB1 (p) + 0aiCi (p)) 57" sim wpz] sin pz dp

w (2, 2) = ]/%S [Brd1(p) P2 4 (By1B1 (p) — Bl (P)) €772 X

0
¢08 @pz + (BeaB1(p) + B2iC1(p)) €77 sin wpz] cos pz dp

K

?(%2) = " EES (1141 (P) €7%4P% - (72181 (P) — T22C (p)) €777 .

]
¢08 0Pz -+ (Y22 B1(P) + 7121C1 (p)) €597 sin wpz] cos pz dp
On the basis of (2.2)'and (3,4)
w*(@0) =V 2\ B4y (5) + BurBa (8) — B (P o0 pa dp
0

u (z,0) = ]/——32!:8 [a14; () + 09181 (p) — 92:C1 (P)] sin pz dp

[
9 (z,0) = I/ES [Y141(P) + T21B1(P) — TaaC1 (p)] cO pz dp

Q
3t2:0)=Y L\ 1mds (5) + moB1 (p) — mC ()] psin pdp
¢

k11

o

_ .,
(w0 =)/ T [ 4 p) + 20T B () —

0
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)
‘@m" G (P)] pcos pzdp

where we have introduced the notation
my = ey, — Cuf (Byay + By)
My = €575 — Cgaf (208 — type + Ba1)

Mg = €1373s — Cpa¥ (®ys + A + Poo)
and used the equalities

E ?721
cis®oly — c33%kBy | egsky g =

€157%y1 — 33" (B218 — B2a®) + €35 (Ya1® — 700) = %ﬁ‘i

€1570lgy — C35% (B2a6 4 Ba1®) + €33 (Ta2 + Y210) = a8 — mae

82 - @2
We represent the solution of the equilibrium equations (1,2) for z < 0 as

u(z,2) = 2 [A; (p) + B, (p) pz) er?sin px dp (3. 5)
n
L]

w @)= L\ [— A+ Ba(p) (A2 — i) ]ercos prap
0

Here A, (P), B, (p) are functions to be determined from the boundary conditions(2,6),
On the basis of (2,4) we obtain by using (3, 5)

u (x,0) = VWS Ay (p) sin pxdp (3.6)
w (z,0) = l/ i

ﬁu‘uaO):?V/{%'ZM[ 4 (p)+ Ba(p) & x+- ]pcospxdp

OQ/"S =3

[— 4:(p) + Bo(p) 523 | cos pr dp

8°Q/

Gxz (2, 0) = V%S 2p [Az(p) — By (p) ﬁ?}psin pxdp
]

Satisfying the continuity conditions (2, 6) on the interface z == 0 of the two media,we
obtain " -
61:%A1+“’5§Bl (8.7)
_ Su(h 2 4 S S (b +20) + 0 p
A=t Twm BT TR T

81 -1 O3 , Oa--ds
20722 Ai -+ 20722

Bs_)_z

1

Here
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8y = myyss — M3y,
my mad — maw
6 = 'k—;"}’zz— T et v 8y =

We introduce the functions
w(z) = wt (z, 0) — w™ (2,0),

143

8y = myysy — Mgyo

(£120 -+ m3w) Yoz -— (Mad — M) Yu1
5+ w?

u (z) = u*lz, 0) — u (x, 0)

and by satisfying the remaining eonditions in (2, 6) we obtain a system of dual integral

equations for the functions A1 (»), B, (p)

(3.8)

@0 =) L4 5[51,41 (P)+ buds (Pl cos prdp =0, 0<a<a

o

6., (x,0) = 1/ % %.2_ £ 5 (8541 (p) + 8,4, (p)] sin px dp = — 5,
0

(3.9)

Lar<la

w(zr) = ‘/:2: —'r%io (8541 (p) + 8eBu(p)lcos prdp =0,  z>a  (3.10)
;
u(z) = V_ __§ (8241 (p) + 8sBi(p)}sinpzdp =0, z>a  (311)
e — it — Bt W
= Bt — Bt — 0y — T
8 = ot — ot = AT — e
B = darts — et — G — ot

Let us show that the system of dual integral equations (3, 8) — (3,11) can be reduced
to a system of singular integral equations with Cauchy kernels, We represent the rela-

tionships (3,10), (3.11) as

o

S [854; (p) + 8681 (p)] cos prdp =
0

\ 18141 () + 84B1 (1)1 sin pe dp =
0

sr<ae (3,12)

T2z V-;L w(r),
0

Toe ]/—élu(x), O<r<a
z>'a

r>a

and use the following formal representations of generalized functions:

—'I?;—S sin ptsin pzdp = 8(x — 1),
0
7‘%- (x smptsmpxi—-) =

0

—2-\ cos ptcos prdp = 8(x — t}

I‘t—l—x

t—ux
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or o
5 sin ptcos pxdp = -z;———i-—-—
0

-
We express A;(p) and B, (p) from (3,12) and convert (3, 8), (3. 9) to the form

a
2 ¢ utytdt
gllw(x)—*-gl? _n'S tg(___mg =Ly (3013)

0
2 ; di

Cw () xdt )
- gzi—n—x%}_—xr + gaolt (2) = ST, Oz <o

[

(C, is a constant which will be determined below), Here

1 .
g1 = "3\_ (878, — 0501), g2 = “,‘g‘(ﬁﬁbl — 855,)
1
g1 = -—Z— (670, — 6483), a2 = 3~ (8685 — 8504)
A = 8585 — 8eb;

It is seen from (3.12) that w (— 2) = w (2) and u (— 2) = — u(x), and therefore

-3 = a @

g\ wMzdt _ ¢ w®d o u(ytar  { u(d

5 122 T t—a? St?~x2“§ t—x
—_— [} —ga

Substituting these expressions into (3, 13), we obtain the following system of singular
integral equations with Cauchy kernels for the functions w (), u (2):

a

1 » 3 / .

guw (x) -+ €12 e S -%(—i_—_)-—? =, (3.14)
1 a

— 8 S LOR 1 goti(z) = ooz (3.15)

—a
4, Solution of the electroelasticity problem, Let us turn to the solu-
tion of the system of integral equations (3, 14), (3, 15), Multiplying (3,15) by ig, and
adding to (8, 14), we obtain a single integral equation

2 4 t— £1 g2

f@) gy \ HEE = o (4.1)

12802 £21

f(x)=w(x) +igwu(z), g = l/m: 8=, 8

We note that for real piezoelectric and elastic media
B11/ 812 >0, go1/ 822 >0, g >1
For example, for the piezoceramic composite PZ7-4 [17]and steel (elastic modulus
E = 20x10'"N/m? and Poisson's ratio v = 0.25)
g = 044 x 1010 N/m?, g, = 6.1 x 101 N2, 2y, — 2.9 x 107 N/M3

&oy == 0,18 x 101° N/m?, g = 1.6, g o= 26
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Following [5], to solve (4, 1) we introduce the function
a

F@) = | 104

t—z
—a

which is analytic in the complex plane with a crack along the segment — @ < & < @
of the real axis, The boundary values of the continuous extension F (2) on this segment
to the left and right are determined by the Sokhotskii-Plemelj formulas

F*(z) 4 F (z) = “:T S f(t_}_rit, F(5)— F* (&)= 1 (2) (4.2)

2
—0

After substituting (4, 2) into (4, 1), we obtain the Riemann boundary value problem
F"(x)«{——~—F‘().— Co

. 81
g +1 ( gu +i g22 ng) (4.9)
Let us determine the particular solution of the homogeneous Riemann problem bounded
near the ends & = -~ @ and vanishing thereon, as
X(z)=(z Yok (7 o g\ atix — 1 a1 -1
(2) =z +a)iri(z —a)i¥,  x= o ln
Then the solution of the problem (4, 3) bounded near the endpoints becomes

a

Xz ¢ i dt
Fo) =5 \ = (G0t poot) =7 .4

—a

Here X *(x) is the value of X (z)on the left edge of the crack, Since the differences
between the displacementszy and g vanish at infinity in the problem under consideration,
it should be required that F {oo) = U, which results in the condition

a

S <gu Cotiger g2 G°t) X*’(t) =0 (4.5)

-0

Using the methods of evaluating integrals [5], we obtain

_ Bi1gn
Co = o 2nac, (4.6)

and taking account of (4, 6) we obtain the general solution of the boundary value prob-
lem (4, 3) from (4, 4) in the following form:

F(z)=—i 59 [X (2) — z + i2ax] (4.7

Zgg
Substituting (4, 7) into (4, 2), we find

[(@) =w(@)+iguu (@) = — i 5 2—60 [X* (2) ~ X~ (2)] (4.9)
: ft(_t_)_ c:i: = 2;';; 6o [X* () + X~ (z) — 2z + i4ax] (4.9)

—a

Xi('lﬂ) =iie¢""]f¢z2a~ 2 (a_+f_):Fix’ (2] <a

a—x
- s {1 g \=i%
X*(x)::.x (x):]fxz-—a““(;—:z-) ' z>a
Therefore, the stresses, displacements, and electrical field components can be obtained
explicitly at each point of the medium, In particular, the difference between the dis-
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placements of the crack edges w (z) and the normal stresses 0, (x, () are represent-
able by the following expressions:

w(x)={guchxn]/a2__x2cos(nln _Hf), lz|<a  (4,10)

0’ . a z>a
zz(xyo) (gel"'““ S i"‘{(‘?—f_wgnu(x)) =
—0y —a lzl<a

7o o ) 22D

It follows from (4, 10) that the displacement, stress and other physical quantities are os-
cillatory and change sign an infinity of times as & tends to the crack endpoints (2 =
=+ a).

For the piezoceramics presented in [1], the sections of sign-change are located in quite
small neighborhoods of the crack endpoints |z | <C a. The values of the parameter d =
(g + 1)/ (g — 1) in (4, 3) are less than three for a considerable number of piezoceramic
composites with conductors (for example, d == 1.08 for the composite medium of the
piezoceramic PZT-4 with steel, and ¢ = 1.03 for copper), The estimate | g — z | <5 %
10-*a results [5] for neighborhoods in which the values of the physical quantities are
oscillatory,

Therefore, the change in sign of the quantities under consideration occurs in thatsmall
neighborhood near the crack endpoints in which the solution obtained does not reflect
the real state because of the departure from the linearized laws of a piezoelectric me-
dium, We use condition (1, 7) to determine the magnitude of the critical load,

Taking into account that
a

S VMcos(nln a+x)dx=:--—-——-———m2(1+4"2)

4 chur

—a

we obtain an expression relating the crack length to the applied load
Gn == V 8guy
¢ na (1 £ 4x%)
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